

huous

sting

Longitudinal Facial Cracks in Continuous Casting

Corus IJmuiden Plant Experience LFC Breakout Locations

Data provided by A. Kamperman of Corus

Each interval is 10 mm. Shows the locations of depression-type LFC's that caused breakouts

.

6

Lance C. Hibbeler

Longitudinal Facial Cracks

Mechanism:

- High tensile strains & stresses in the solidifying shell at the meniscus, due to high heat transfer and/or non-uniform shell growth. Mainly thermal in origin
- Influencing factors (worse with):
 - peritectic steels (0.08-0.15%C)
 - high S level or low Mn/S ratio < 25
 - high or variable casting speed
 - Metal level fluctuations
 - Mold powder, taper, oscillation problems
 - Overcooling in sprays
 - Insufficient submold support
 - Poor alignment (especially between mold & submold)

BG Thomas

Longitudinal Corner Cracks (Type V)

- Mechanism: Hoop stresses around large corner gap due to locally thin, embrittled shell at corner allow internal cracks to propagate through
- Influencing factors (worse with):
 - Large corner radius
 - Insufficient taper (generates corner gap in upper mold which reduces heat transfer there)
 - Steel with 0.17-0.25%C, S>0.035%; P>0.035%
- Solution:
 - Decrease corner radius to 3-4 mm
 - Optimize taper (use double or parabolic design)

BG Thomas

Depression Mechanisms

- Inside curve:
 - Friction + bending pins the shell at the transition points
 - Mold may induce buckling if local shell shrinkage is not enough to match the mold perimeter length change

- Outside Curve
 - Friction + bending pins the shell at the inside/outside curve transition point
 - Excessive NF taper causes the shell to lift off the mold surface, reducing heat transfer
 - Bending (funnel and ferrostatic pressure) causes tensile stress on surface, leads to necking

- Shell under compression once the narrow face comes into good contact with the shell
 - Occurs earlier with deeper crowns
 - Tends to cause buckling, leads to other

Strain Decomposition: Identify Bending Effect

Analytical Bending Model: <u>Comparison with Numerical Model</u>

 Take the difference between bending a beam to the funnel radius at the meniscus and the funnel radius at some other depth:

$$\varepsilon_{bending}(z) = \frac{\delta(z)}{r(z_{meniscus})} - \frac{\delta(z)}{r(z)} = \delta(z) \left(\frac{r(z) - r(z_{meniscus})}{r(z)r(z_{meniscus})}\right)$$
$$r(z) = \frac{crown(z)}{4} + \frac{(outer funnel width - inner funnel width)^2}{16 \cdot crown(z)}$$

 δ = distance from neutral axis \thickapprox shell thickness

 Compare with results of 2D model with the thermal effects subtracted

Subsurface Hot Tears

- Typical solidification stresses put tension on the solidification front
 - Tension increased by bending effect in inner curve region, thus higher risk of hot tearing
- Critical hot tearing strain quantified by Won:

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

• 24

Lance C. Hibbeler

Subsurface Hot Tears

Extremely fine mesh required to apply Won model (0.06 mm element size is insufficient) - Use 1D numerical model to calculate temperatures and inelastic strain profile history in flat regions of mold - Add bending effect with analytical model Low-carbon steels exhibit strong numerical noise - Use a higher carbon grade (0.07%C) to reduce effect - High-carbon grades are also more crack-sensitive Define "damage index" as ratio of actual damage strain to critical damage strain (crack forms at unity) $\mathcal{E}_{dma} = \mathcal{E}(f_s = 99\%) - \mathcal{E}(f_s = 90\%)$ $D = \varepsilon_{dmg} / \varepsilon_{c}$ University of Illinois at Urbana-Champaign Metals Processing Simulation Lab Lance C. Hibbeler 25

Subsurface Hot Tears

- No hot tears will form under normal operation
 - Bending effect increases likelihood of cracks
- Most likely place is just a few mm subsurface
- Funnels more susceptible to hot tears:
 - Narrower funnel width (higher bending strain)
 - Deeper crowns (higher bending strain)
 - Longer (higher strain rate when mushy zone is large)

Implications on Funnel Design

- This effect is proportional to the funnel radius
 - Larger radius = lower cracking tendency
- Also affected by funnel shape in casting direction
 - Want more change in shape close to the meniscus when the mushy zone is still small
 - "Radiused" style better than "linear"
- These subsurface cracks propagating through the shell are the likely mechanism behind a depression evolving into a breakout

Crack Simulation Domain

10

1.2

1

0.8

0.6

0.4

0.2

0

0

2

4

Fraction of qmold

Time (seconds)

6

Depression Simulations

Depression Simulation

- Case with 80% reduction in heat flux produces reasonable depression shape
 - However, comparison is with a cold sample

Brimacombe *et al.*, MMTB 1979

H Jasti

.

Metals Processing Simulation Lab

Lance C. Hibbeler

33

- Increasing superimposed tensile displacement makes depressions deeper
 - Necking phenomenon

University of Illinois at Urbana-Champaign

Study of Depression Behavior

 Decreasing applied heat flux under superimposed *compressive* displacement causes deep depressions via buckling

Cracking Potential

- Damage index increases with increasing superimposed tensile displacement and increasing drop in heat flux
- Cracking is imminent under certain conditions (strong imposed tension)

Five families of LFCs have been observed

- I. Funnel molds: inner curve depressions
 - Lessen with larger horizontal funnel radius
- II. Funnel molds: outer curve depressions
 - Lessen by optimizing taper
- III. Heat transfer related
- IV. Fluid flow related near SEN
- -V. Taper related near NF

University of Illinois at Urbana-Champaign

Conclusions - 2

Metals Processing Simulation Lab

- Depressions can be formed from severe local drops in heat flux
 - Superimposed tension (insufficient taper) leads to slightly deeper depressions
 - Superimposed compression (excessive taper) leads to much deeper depressions
- However, cracks require tension to form, so either subsurface cracks propagate through the shell or something is very wrong at the shell surface

Lance C. Hibbeler

