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Objectives

• Review mechanisms for longitudinal 
cracks in continuously cast steel

• Simulate crack formation using thermo-Simulate crack formation using thermo
mechanical FE model
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Cracks in Continuously Cast Steel

Cracks form by combination of      1) tensile stress and

2) metallurgical embrittlement2) metallurgical embrittlement
Surface Cracks   (initiated in the mold)
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Brimacombe & Sorimachi, Met Trans B, 
8B, 1977, pp 489-505



Longitudinal Facial Cracks in 
Continuous CastingContinuous Casting
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Mode Symbol Location Notes

⌂∆ ∆
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Mode Symbol Location Notes

I ◊ Inside Curve Funnel only; depression-type; excessive bending

II ○ Outside Curve Funnel only; depression-type; excessive NF taper

III ⌂ No Preference Jagged, short cracks; heat transfer related
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IV □ Near SEN Fluid-flow related

V ∆ Off-Corner WF Inadequate NF taper

Corus IJmuiden Plant Experience
LFC Breakout Locations

22
Inner Flat Inner Curve Outer Curve Outer Flat

Data provided by A. Kamperman of Corus
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Distance from Center (mm)

Each interval is 10 mm. Shows the locations of depression-type LFC’s that caused breakouts



Longitudinal Facial Cracking
Depression Mechanism (Type I II)Depression Mechanism (Type I, II)

• Root cause is non-uniform heat transfer
• Initiate nonuniformity (shell depression)Initiate nonuniformity (shell depression)

– Variations in slag rim thickness at meniscus
– Gap from necking (mold friction issues)

G f b kli ( i NF t )– Gap from buckling (excessive NF taper)

• Depression causes:
– Lower heat flux

M
o

ld
 W

M
o

ld
 W

– Higher shell temperature
– Thinner shell
– Grain growth (larger grains)

Amplifies if the 
shell buckles

W
all

W
all

Grain growth (larger grains)
– More brittle behavior
– Stress and strain concentrations

• Tensile inelastic strain exceeds critical

Combination 
causes cracks
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• Tensile inelastic strain exceeds critical 
value  cracks form

Longitudinal Facial Cracks

• Mechanism:
High tensile strains & stresses in the solidifying shell– High tensile strains & stresses in the solidifying shell 
at the meniscus, due to high heat transfer and/or 
non-uniform shell growth.  Mainly thermal in origin

• Influencing factors (worse with):
– peritectic steels (0.08-0.15%C)

high S level or low Mn/S ratio < 25– high S level or low Mn/S ratio < 25
– high or variable casting speed
– Metal level fluctuations
– Mold powder, taper, oscillation problems
– Overcooling in sprays
– Insufficient submold support BG Thomas
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Insufficient submold support
– Poor alignment (especially between mold & submold)

BG Thomas



Causes of
Nonuniform Mold Heat TransferNonuniform Mold Heat Transfer

• Level fluctuations (fluid flow problems, too-shallow 
submergence depth etc )submergence depth, etc.)

• Mold hotface variations around perimeter at meniscus
– Mold water slots (slot variations, cold mold water)

M ld t lit (l l l l i h l t l l– Mold water quality (local scale plugging a channel, etc. cause local 
variations 

• Superheat variations
• Abrupt speed changes
• Excessive heat removal (makes variations more likely)
• Insufficient heat SEN preheat causing meniscus bridgingInsufficient heat SEN preheat causing meniscus bridging 

(Robinson 1994)

BG Thomas
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BG Thomas

High Temperature Embrittlement
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BG Thomas



Mechanism of 
Longitudinal CrackingLongitudinal Cracking

Metal level

Casting direction Side
view

(mainly Mode III)

Mold wall
Top
view

(mainly Mode III)

shell

BG Thomas

view
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BG Thomas

Location of Crack Formation
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Longitudinal Corner Cracks
(Type V)( ype )
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Brimacombe & Sorimachi, Met Trans B, 
8B, 1977, pp 489-505

Longitudinal Corner Cracks
(Type V)

• Mechanism: Hoop stresses around large corner 
gap due to locally thin, embrittled shell at corner allow

( ype )

gap due to locally thin, embrittled shell at corner allow 
internal cracks to propagate through

• Influencing factors (worse with):
– Large corner radius
– Insufficient taper (generates corner gap in upper 

mold which reduces heat transfer there))
– Steel with 0.17-0.25%C, S>0.035%; P>0.035% 

• Solution: 
Decrease corner radius to 3 4 mm– Decrease corner radius to 3-4 mm

– Optimize taper (use double or parabolic design)

BG Thomas
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Depression Mechanisms
• Inside curve:

– Friction + bending pins the shell at the transition points
M ld i d b kli if l l h ll h i k i t h t t h th– Mold may induce buckling if local shell shrinkage is not enough to match the 
mold perimeter length change

• Outside Curve 1

2

3

• Outside Curve
– Friction + bending pins the shell at the inside/outside curve transition point
– Excessive NF taper causes the shell to lift off the mold surface, reducing 

heat transfer

1

– Bending (funnel and ferrostatic pressure) causes tensile stress on surface, 
leads to necking
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Excessive Narrow Face Taper

• Shell under compression once the narrow 
face comes into good contact with the shell
– Occurs earlier with deeper crowns

– Tends to cause buckling, leads to other 
problems  0.5
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Stress Profiles and Histories
Through Thickness in Flat RegionsThrough Thickness in Flat Regions
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• By mold exit, only the first 2 mm of 
the shell are in compression
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0 1 2 3 4 5 6 7 8 9 10 11
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Surface Stress Around Perimeter:
Effect of Funnel Width
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Stress Near Solidification Front:
Effect of Funnel Width
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Funnel Bending Effect

• A unique attribute of funnel molds is that the steel 
h ll i i ifi tl b t it lid d thshell is significantly bent as it slides down the 

mold

Tension

Compression

Compression

Tension
Compression

• Beam theory from solid mechanics can elucidate the 
important parameters in the phenomenon

y

x
2·h

This end pinned, u = 0
M

εmax, compressive

εmax, tensile

x

y

R
ε = −
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w

εmax, compressive R

[R.C. Hibbeler, Mechanics of Materials, 5e, 2003]



Strain Decomposition:
Identify Bending EffectIdentify Bending Effect

Centerline Inside Curve
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total thermal mechanical thermal elastic inelastic= + = + +ε ε ε ε ε ε

Analytical Bending Model:
Comparison with Numerical ModelComparison with Numerical Model

• Take the difference 
between bending a beam 0 70
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• Compare with results of 2D 
model with the thermal

Bending Strain on Solidification Front
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model with the thermal 
effects subtracted



Analytical Parametric Study
Larger total funnel width = Larger radius = Lower bending strain and strain rate

Shallower funnel = Larger radius = Lower bending strain and strain rate
Longer Funnel = Increases strain near bottom of funnel (larger radius for more time), but lowers strain rate
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Subsurface Hot Tears

• Typical solidification stresses put tension on the 
lidifi ti f tsolidification front

– Tension increased by bending effect in inner curve 
region thus higher risk of hot tearingregion, thus higher risk of hot tearing

• Critical hot tearing strain quantified by Won:
0.02821=ε Won et al., Metall. Mat. Trans., 31B:4 (2000), pg. 779

• Brittle temperature zone (BTZ):

0.3131 0.8638
=

⋅Δc
BT

ε
ε

Brittle temperature zone (BTZ):

• Average inelastic strain rate in BTZ:

( 99%) ( 90%)B s sT T f T fΔ = = − =
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g
( 99%) ( 90%)

( 99%) ( 90%)
s s

s s

f f

t f t f

ε εε = − ==
= − =





Subsurface Hot Tears

• Extremely fine mesh required to apply Won model 
(0.06 mm element size is insufficient)
– Use 1D numerical model to calculate temperatures and 

inelastic strain profile history in flat regions of moldinelastic strain profile history in flat regions of mold

– Add bending effect with analytical model

• Low-carbon steels exhibit strong numerical noiseLow carbon steels exhibit strong numerical noise
– Use a higher carbon grade (0.07%C) to reduce effect

– High-carbon grades are also more crack-sensitiveg g

• Define “damage index” as ratio of actual damage 
strain to critical damage strain (crack forms at 
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unity)
dmg cD ε ε=( 99%) ( 90%)dmg s sf fε ε ε= = − =

Subsurface Hot Tears

• No hot tears will form 
under normal operation 0.20
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Implications on Funnel Design

• This effect is proportional to the funnel radius
– Larger radius = lower cracking tendency

• Also affected by funnel shape in casting direction
– Want more change in shape close to the meniscus when 

the mushy zone is still small

– “Radiused” style better than “linear”Radiused  style better than linear

• These subsurface cracks propagating through the 
shell are the likely mechanism behind a depressionshell are the likely mechanism behind a depression 
evolving into a breakout
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Implications on Funnel Design
• A larger funnel radius provides:

– More uniform heat transfer
– Smaller bending effect in the transition region
– Lower tendency to form subsurface hot tears

• A “better” funnel (with respect to depression type• A better funnel (with respect to depression-type 
LFCs) has a wide funnel and small crown

D

Increase outer 
funnel widthDecrease crown funnel width

( )2
( )

( )
outer funnel width inner funnel widthcrown z −

• Depression-related LFCs are also affected by 
f i ti d f t

Decrease inner 
funnel width

( )( )
( )

4 16 ( )

f fcrown z
r z

crown z
= +

⋅

friction, and narrow-face taper
• Many other phenomena can cause LFCs



Crack Simulation Domain

Moving displacement with 
straight line enforced

Insulated
q=0  

Stress free

Solidification

Solidification CrackFixed 
qmold

CrackInsulated
q=0

Displacement
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q=0  

H Jasti

Initiate a Depression with 
Nonuniform Heat TransferNonuniform Heat Transfer

• Varies with distance • Varies with time inVaries with distance 
away from the crack

Varies with time in 
mold
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Distance from Crack (mm) Time (seconds)
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Depression Simulations
Vertical direction inelastic strain, 0.75 mm tensile displacement superimposed on solidification shrinkage

Heat flux locally decreased BY 50% Heat flux locally decreased BY 80%
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H Jasti

y Heat flux locally decreased BY 80%

Greater decreases in heat flux lead to deeper depressions

Depression Simulation

• Case with 80%Case with 80% 
reduction in heat flux 
produces reasonable 
depression shapedepression shape
– However, comparison is 

with a cold sample

Brimacombe et al., 
MMTB 1979
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Study of Depression Behavior

• Greater decreases in heat flux lead to deeper 
depressions
– Differences not significant until mold exit
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H Jasti

Study of Depression Behavior

• Increasing superimposed tensile
displacement makes depressions deeper
– Necking phenomenon

Effect of Applied Tension Strain on Depression
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Study of Depression Behavior

• Decreasing applied heat flux under 
superimposed compressive displacement 
causes deep depressions via buckling

Effect of Heat flux Uniformity on Depression 
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• Damage index increases with increasing 
i d t il di l t dsuperimposed tensile displacement and 

increasing drop in heat flux
C ki i i i t d t i• Cracking is imminent under certain 
conditions (strong imposed tension)
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Conclusions - 1

• Five families of LFCs have been observed
– I. Funnel molds: inner curve depressions

• Lessen with larger horizontal funnel radius

– II. Funnel molds: outer curve depressions
• Lessen by optimizing taper

– III.  Heat transfer related

– IV.  Fluid flow related near SEN

– V.  Taper related near NF
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Conclusions - 2

• Depressions can be formed from severe 
local drops in heat flux
– Superimposed tension (insufficient taper) leads 

to slightly deeper depressions

– Superimposed compression (excessive taper) 
leads to much deeper depressions

• However, cracks require tension to form, so 
either subsurface cracks propagate through 
the shell or something is very wrong at the 
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shell surface
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